Input Attribution for Statistical Model Checking Using Logistic Regression
نویسندگان
چکیده
We describe an approach to Statistical Model Checking (SMC) that produces not only an estimate of the probability that specified properties (a.k.a. predicates) are satisfied, but also an “input attribution” for those predicates. We use logistic regression to generate the input attribution as a set of linear and non-linear functions of the inputs that explain conditions under which a predicate is satisfied. These functions provide quantitative insight into factors that influence the predicate outcome. We have implemented our approach on a distributed SMC infrastructure, demeter, that uses Linux Docker containers to isolate simulations (a.k.a. trials) from each other. Currently, demeter is deployed on six 20-core blade servers, and can perform tens of thousands of trials in a few hours. We demonstrate our approach on examples involving robotic agents interacting in a simulated physical environment. Our approach synthesizes input attributions that are both meaningful to the investigator and have predictive value on the predicate outcomes.
منابع مشابه
Hybrid Method of Logistic Regression and Data Envelopment Analysis for Event Prediction: A Case Study (Stroke Disease)
Abstract Predictive analytics is an area of statistics that deals with extracting information from data and using it to predict trends and behavior patterns. Many mathematical modeling has been developed and used for prediction, and in some cases, they have been found to be very strong and reliable. This paper studies different mathematical and statistical approaches for events prediction. The ...
متن کاملSample size determination for logistic regression
The problem of sample size estimation is important in medical applications, especially in cases of expensive measurements of immune biomarkers. This paper describes the problem of logistic regression analysis with the sample size determination algorithms, namely the methods of univariate statistics, logistics regression, cross-validation and Bayesian inference. The authors, treating the regr...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملA SAS Macro to Analyze Data From a Matched or Finely Stratified Case-Control Design
A matched case-control design is a common approach used to assess diseaseexposure relationships, and is often a more efficient method than an unmatched design. However, for the valid analysis of such an approach, a modeling technique that incorporates the matched nature of the data is needed. This prohibits the use of a standard unconditional logistic regression analysis generally available in ...
متن کاملComparison of ordinary logistic regression and robust logistic regression models in modeling of pre-diabetes risk factors
Background: Regarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors. Methods: This is a cross-sectional study and conducted on 6460 people, over ...
متن کامل